Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            The negatively charged tin-vacancy center in diamond ( ) is an emerging platform for building the next generation of long-distance quantum networks. This is due to the ’s favorable optical and spin properties including bright emission, insensitivity to electronic noise, and long spin coherence times at temperatures above 1 K. Here, we demonstrate measurement of a single electronic spin with a single-shot readout fidelity of 87.4%, which can be further improved to 98.5% by conditioning on multiple readouts. In the process, we develop understanding of the relationship between strain, magnetic field, spin readout, and microwave spin control. We show that high-fidelity readout is compatible with rapid microwave spin control, demonstrating a favorable parameter regime for use of the center as a high-quality spin-photon interface. Finally, we use weak quantum measurement to study measurement-induced dephasing; this illuminates the fundamental interplay between measurement and decoherence in quantum mechanics, and provides a universal method to characterize the efficiency of color-center spin readout. Taken together, these results overcome an important hurdle in the development of the -based quantum technologies and, in the process, develop techniques and understanding broadly applicable to the study of solid-state quantum emitters. Published by the American Physical Society2024more » « less
- 
            Abstract In WSe2monolayers, strain has been used to control the energy of excitons, induce funneling, and realize single-photon sources. Here, we developed a technique for probing the dynamics of free excitons in nanoscale strain landscapes in such monolayers. A nanosculpted tapered optical fiber is used to simultaneously generate strain and probe the near-field optical response of WSe2monolayers at 5 K. When the monolayer is pushed by the fiber, its lowest energy states shift by as much as 390 meV (>20% of the bandgap of a WSe2monolayer). Polarization and lifetime measurements of these red-shifting peaks indicate they originate from dark excitons. We conclude free dark excitons are funneled to high-strain regions during their long lifetime and are the principal participants in drift and diffusion at cryogenic temperatures. This insight supports proposals on the origin of single-photon sources in WSe2and demonstrates a route towards exciton traps for exciton condensation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available